In den beiden ersten Bänden wurden die mathematischen Grundlagen der Analysis und der linearen Wirtschaftsalgebra behandelt, die zum Lösen ökonomischer Fragestellungen unentbehrlich sind. Dieses Wissen reicht aber nicht aus, um dynamische Finanz- und Wirtschaftsmodelle zu verstehen. Um Konjunktur- und Wachstumsmodelle zu begreifen, bedarf es in erster Linie der Kenntnis über das Lösen von Differenzen- und Differentialgleichungen und -gleichungssystemen. Die wichtigsten Lösungsansätze werden in den beiden ersten Teilen des Bandes 3 anschaulich dargestellt und auf zahlreiche klassische Wirtschaftsmodelle der Volks- und der Betriebswirtschaftslehre angewendet. Für die praktische Anwendung hilfreich sind insbesondere die Stabilitätsbetrachtungen. Im dritten Teil dieses Bandes wird die Wahrscheinlichkeitstheorie mit ihren mathematischen Grundlagen dargestellt. Darauf aufbauend werden im letzten Teil stochastische Prozesse betrachtet, die in letzter Zeit mit dem wachsenden Interesse für mathematische Modelle der Finanzwissenschaft immer bedeutsamer wurden. Neben Markoff-Prozessen mit diskreter und stetiger Zeitabhängigkeit werden Wiener-Prozesse und deren Anwendungen behandelt. Zahlreiche Beispiele und Kontrollaufgaben erleichtern das Verständnis und machen den Leser mit den Rechenverfahren vertraut.
ISBN: 978-3-642-45304-5